官方微调
1. image-text retrival 微调
命令
1 2 3
| python -m torch.distributed.run --nproc_per_node=8 train_retrieval.py \ --config ./configs/retrieval_coco.yaml \ --output_dir output/retrieval_coco
|
解析
![](/../images/fine-tuning/1-1.png)
微调设置
1 2 3 4 5
| def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr): """Decay the learning rate""" lr = (init_lr - min_lr) * 0.5 * (1. + math.cos(math.pi * epoch / max_epoch)) + min_lr for param_group in optimizer.param_groups: param_group['lr'] = lr
|
- 微调参数量:vision encoder和bert encoder
2. image-text captioning 微调
1
| python -m torch.distributed.run --nproc_per_node=8 train_caption.py
|
3. VQA 微调
1
| python -m torch.distributed.run --nproc_per_node=16 train_vqa.py
|
- 微调设置
- 微调参数:vision encoder和bert decoder
4. NLVR2 微调
1
| python -m torch.distributed.run --nproc_per_node=16 train_nlvr.py
|
执行效果
![](/../images/fine-tuning/1_2.png)
Author:
Jiaqi Li
Permalink:
http://example.com/2024/03/15/Blip-fine-tuning/
License:
Copyright (c) 2019 CC-BY-NC-4.0 LICENSE
Slogan:
Do you believe in DESTINY?